Alexa Fluor® 700 anti-mouse CD45 Antibody

Pricing & Availability
Clone
30-F11 (See other available formats)
Regulatory Status
RUO
Other Names
T200, Ly-5, LCA
Isotype
Rat IgG2b, κ
Ave. Rating
Submit a Review
Product Citations
publications
30-F11_Alx700_020608
C57BL/6 mouse splenocytes stained with 30-F11 Alexa Fluor® 700
  • 30-F11_Alx700_020608
    C57BL/6 mouse splenocytes stained with 30-F11 Alexa Fluor® 700
  • 54_Mouse_Liver_Ecadherin_CD45
    Confocal image of C57BL/6 mouse liver sample acquired using the IBEX method of highly multiplexed antibody-based imaging: E-Cadherin (red) in Cycle 1 and CD45 (cyan) in Cycle 3. Tissues were prepared using ~1% (vol/vol) formaldehyde and a detergent. Following fixation, samples are immersed in 30% (wt/vol) sucrose for cryoprotection. Images are courtesy of Drs. Andrea J. Radtke and Ronald N. Germain of the Center for Advanced Tissue Imaging (CAT-I) in the National Institute of Allergy and Infectious Diseases (NIAID, NIH).
See Alexa Fluor® 700 spectral data
Cat # Size Price Quantity Check Availability Save
103127 25 µg 76€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
103128 100 µg 172€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

CD45 is a 180-240 kD glycoprotein also known as the leukocyte common antigen (LCA), T200, or Ly-5. It is a member of the protein tyrosine phosphatase (PTP) family, expressed on all hematopoietic cells except mature erythrocytes and platelets. There are different isoforms of CD45 that arise from variable splicing of exons 4, 5, and 6, which encode A, B, and C determinants, respectively. CD45 plays a key role in TCR and BCR signal transduction. These isoforms are very specific to the activation and maturation state of the cell as well as cell type. The primary ligands for CD45 are galectin-1, CD2, CD3, CD4, TCR, CD22, and Thy-1.

Product Details
Technical Data Sheet (pdf)

Product Details

Reactivity
Mouse
Antibody Type
Monoclonal
Host Species
Rat
Immunogen
Mouse thymus or spleen
Formulation
Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide.
Preparation
The antibody was purified by affinity chromatography and conjugated with Alexa Fluor® 700 under optimal conditions.
Concentration
0.5 mg/ml
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C, and protected from prolonged exposure to light. Do not freeze.
Application

FC - Quality tested

SB - Reported in the literature, not verified in house

Recommended Usage

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. The suggested use of this reagent is ≤ 0.25 µg per 106 cells in 100 µl volume. It is highly recommended that the reagent be titrated for optimal performance for each application.

* Alexa Fluor® 700 has a maximum emission of 719 nm when it is excited at 633nm / 635nm. Prior to using Alexa Fluor® 700 conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome.


Alexa Fluor® and Pacific Blue™ are trademarks of Life Technologies Corporation.

View full statement regarding label licenses
Excitation Laser
Red Laser (633 nm)
Application Notes

Clone 30-F11 reacts with all isoforms and both CD45.1 and CD45.2 alloantigens of CD45.

Additional reported applications (for relevant formats) include: immunoprecipitation3, complement-dependent cytotoxicity1,5, immunohistochemistry (acetone-fixed frozen sections, zinc-fixed paraffin-embedded sections and formalin-fixed paraffin-embedded sections)4,6, Western blotting7, and spatial biology (IBEX)10,11. The Ultra-LEAF™ purified antibody (Endotoxin < 0.01 EU/µg, Azide-Free, 0.2 µm filtered) is recommended for functional assays (Cat. No. 103163 and 103164).

Additional Product Notes

Iterative Bleaching Extended multi-pleXity (IBEX) is a fluorescent imaging technique capable of highly-multiplexed spatial analysis. The method relies on cyclical bleaching of panels of fluorescent antibodies in order to image and analyze many markers over multiple cycles of staining, imaging, and, bleaching. It is a community-developed open-access method developed by the Center for Advanced Tissue Imaging (CAT-I) in the National Institute of Allergy and Infectious Diseases (NIAID, NIH).

Application References

(PubMed link indicates BioLegend citation)
  1. Podd BS, et al. 2006. J. Immunol. 176:6532. (FC, CMCD) PubMed
  2. Haynes NM, et al. 2007. J. Immunol. 179:5099. (FC)
  3. Ledbetter JA, et al. 1979. Immunol. Rev. 47:63. (IP)
  4. Simon DI, et al. 2000. J. Clin. Invest. 105:293. (IHC)
  5. Seaman WE. 1983. J. Immunol. 130:1713. (CMCD)
  6. Cornet A, et al. 2001. P. Natl. Acad. Sci. USA 98:13306. (IHC)
  7. Tsuboi S and Fukuda M. 1998. J. Biol. Chem. 273:30680. (WB) PubMed
  8. Liu F, et al. 2012. Blood. 119:3295. PubMed
  9. Pelletier AN, et al. 2012. J. Immunol. 188:5561. PubMed
  10. Radtke AJ, et al. 2020. Proc Natl Acad Sci U S A. 117:33455-65. (SB) PubMed
  11. Radtke AJ, et al. 2022. Nat Protoc. 17:378-401. (SB) PubMed
Product Citations
  1. Daubeuf F, et al. 2017. Curr Protoc Mouse Biol. 10.1002/cpmo.26. PubMed
  2. Aguilar-Pimentel A, et al. 2017. PLoS One. 12(6):e0178563. PubMed
  3. Natale CA, et al. 2018. Elife. 7. PubMed
  4. Hossain DMS, et al. 2018. J Clin Invest. 128:644. PubMed
  5. Emgård J, et al. 2018. Immunity. 143:419. PubMed
  6. Cohen M et al. 2018. Cell. 175(4):1031-1044 . PubMed
  7. Hiebert P et al. 2018. Developmental cell. 46(2):145-161 . PubMed
  8. White JP et al. 2018. Cell. 175(5):1198-1212 . PubMed
  9. Philip E Boulais et al. 2018. Immunity. 49(4):627-639 . PubMed
  10. Shan M et al. 2018. Immunity. 49(4):709-724 . PubMed
  11. Guzzi N et al. 2018. Cell. 173(5):1204-1216 . PubMed
  12. Riopel M, et al. 2019. Mol Metab. 20:89. PubMed
  13. Tordesillas L, et al. 2018. Nat Commun. 9:5238. PubMed
  14. Cao W, et al. 2017. Immunity. 47:1182. PubMed
  15. Grzelak A, et al. 2018. Int J Mol Sci. 19:. PubMed
  16. Koliaraki V et al. 2019. Cell reports. 26(3):536-545 . PubMed
  17. Litwinoff EMS, et al. 2017. Obes Res Clin Pract. 12:174. PubMed
  18. Stoupa A, et al. 2018. EMBO Mol Med. 10:. PubMed
  19. Peltzer N, et al. 2018. Nature. 557:112. PubMed
  20. Uderhardt S, et al. 2019. Cell. 177:541. PubMed
  21. Bommareddy PK, et al. 2019. J Biol Methods. 6:2. PubMed
  22. Merz SF, et al. 2019. Nat Commun. 10:2312. PubMed
  23. Haertel E, et al. 2018. Eur J Immunol. 48:1001. PubMed
  24. Spangenberg E, et al. 2019. Nat Commun. 10:3758. PubMed
  25. Avraham S, et al. 2019. Oncogene. 38:3812. PubMed
  26. Guérin MV, et al. 2019. Nat Commun. 10:4131. PubMed
  27. Acker KP, et al. 2019. iScience. 19:281. PubMed
  28. Sitaraman S, et al. 2019. Sci Rep. 9:12509. PubMed
  29. Komuczki J, et al. 2019. Immunity. 50:1289. PubMed
  30. Yadava K et al. 2019. Elife. 8 pii: e44821. PubMed
  31. Miao Y et al. 2019. Cell. 177(5):1172-1186 . PubMed
  32. Leyva‐Castillo JM et al. 2019. Immunity. 50(5):1262-1275 . PubMed
  33. Amir M, et al. 2018. Cell Rep. 25:3733. PubMed
  34. Saha D et al. 2017. Cancer cell. 32(2):253-267 . PubMed
  35. Gimblet C et al. 2017. Cell host & microbe. 22(1):13-24 . PubMed
  36. Hartwig T et al. 2017. Molecular cell. 65(4):730-742 . PubMed
  37. Sophie Thiemann et al. 2017. Cell host & microbe. 21(6):682-694 . PubMed
  38. Crauste F, et al. 2017. Cell Syst. 0.379166667. PubMed
  39. O'Boyle C, et al. 2020. Int J Stroke. 0.746527778. PubMed
  40. Tomida S, et al. 2019. Sci Rep. 9:10751. PubMed
  41. Hayashida E, et al. 2019. J Neuroinflammation. 0.789583333. PubMed
  42. Wolf Y, et al. 2019. Cell. 179:219. PubMed
  43. Schaftenaar FH, et al. 2019. Sci Rep. 9:17391. PubMed
  44. Zhang D, et al. 2020. Signal Transduct Target Ther. 5:24. PubMed
  45. Silva HM, et al. 2019. J Exp Med. 216:786. PubMed
  46. Pflügler S, et al. 2020. Commun Biol. 3:252. PubMed
  47. Fu R, et al. 2020. Sci Rep. 10:1455. PubMed
  48. Trittel S, et al. 2019. Sci Rep. 9:16362. PubMed
  49. Wang X, et al. 2020. Signal Transduct Target Ther. 5:35. PubMed
  50. Putnam NE, et al. 2019. PLoS Pathog. 15:e1007744. PubMed
  51. Katsura A, et al. 2017. Mol Oncol. 11:1241. PubMed
  52. Egusquiza RJ, et al. 2020. Environ Health Perspect. 128:47011. PubMed
  53. Li J, et al. 2018. Immunity. 49:178. PubMed
  54. Ji G, et al. 2019. Bone Joint J. 101-B:108. PubMed
  55. Grajchen E, et al. 2020. J Neuroinflammation. 0.863888889. PubMed
  56. Vacca F, et al. 2020. eLife. 9:e54017.. PubMed
  57. O'Connor T, et al. 2020. Cancer Cell. 36(3):250-267. PubMed
  58. Kienzl M, et al. 2020. Oncoimmunology. 9:1776059. PubMed
  59. Tanaka S, et al. 2012. J Immunol. 188:6145. PubMed
  60. Yang R, et al. 2012. J Immunol. 189:2656. PubMed
  61. Guey B, et al. 2014. Proc Natl Acad Sci U S A. 111:17254. PubMed
  62. Abboud D, et al. 2015. Sci Rep. 5: 14746. PubMed
  63. Stutchfield B, et al. 2015. Gastroenterology. 149: 1896-1909.e14. PubMed
  64. Frank E, et al. 2016. Toxicol Pathol. 10.1177/0192623315620587. PubMed
  65. Xi H, et al. 2016. J Exp Med. 213: 189 - 207. PubMed
  66. Kostadinova E, et al. 2016. Sci Rep. 6:30943. PubMed
  67. Gicheva N, et al. 2016. Biochem Biophys Res Commun. 479:1-4. PubMed
  68. Cambridge E, et al. 2017. Exp Hematol. 45:64-68.e5. PubMed
  69. Coursey T, et al. 2016. Mucosal Immunol. 10.1038/mi.2016.83. PubMed
  70. Hu X, et al. 2016. Nat Commun. 7:13095. PubMed
  71. Tian F, et al. 2016. Nat Commun. 7:13283. PubMed
  72. Sen D, et al. 2016. PLoS One. 11:e0165064. PubMed
  73. Harvey RE et al. 2017. Endocrinology. 158(7):2179-2189 . PubMed
  74. Vackova J, et al. 2020. Int J Mol Sci. 21:00. PubMed
  75. Laczkó D, et al. 2020. Immunity. 53:724. PubMed
  76. Trivedi S, et al. 2020. Elife. 9:00. PubMed
  77. Doty DT, et al. 2020. Int J Mol Sci. 21:00. PubMed
  78. Bogie JF, et al. 2020. Ther Adv Chronic Dis. 11:2040622320947378. PubMed
  79. Zhang D, et al. 2020. Signal Transduct Target Ther. 5:24. PubMed
  80. Li J, et al. 2020. Cancer Immunol Res. 0.529166667. PubMed
  81. Clark JT, et al. 2021. eLife. 10:00. PubMed
  82. Lebratti T, et al. 2021. eLife. 10:00. PubMed
  83. Nicolas-Boluda A, et al. 2021. eLife. 10:00. PubMed
  84. Ren Z, et al. 2021. EMBO Molecular Medicine. :e14059. PubMed
  85. Riquelme SA, et al. 2020. Cell Metabolism. 31(6):1091-1106.e6. PubMed
  86. Ruhland MK, et al. 2020. Cancer Cell. 37(6):786-799.e5. PubMed
  87. Acharya N, et al. 2020. Immunity. 53(3):658-671.e6. PubMed
  88. Evren E, et al. 2020. Immunity. 54(2):259-275.e7. PubMed
  89. Shannon JP, et al. 2021. Immunity. 54(2):276-290.e5. PubMed
  90. Mathewson ND, et al. 2021. Cell. 184(5):1281-1298.e26. PubMed
  91. He Y, et al. 2021. Cell Metabolism. 33(5):988-1000.e7. PubMed
  92. Gonalves S, et al. 2021. Cell Reports. 34(11):108860. PubMed
  93. Schiller M, et al. 2021. Immunity. 54(5):1022-1036.e8. PubMed
  94. Nanou A, et al. 2021. Cell Reports. 35(8):109168. PubMed
  95. McFarland AP, et al. 2021. Immunity. 54(6):1320-1337.e4. PubMed
  96. Ahn D, et al. 2021. Cell Reports. 35(9):109196. PubMed
  97. Wang M, et al. 2021. iScience. 24(7):102766. PubMed
  98. Di Pilato M, et al. 2021. Cell. 184(17):4512-4530.e22. PubMed
  99. Korin B, et al. 2020. Sleep. :43. PubMed
  100. Wong Fok Lung T, et al. 2020. Nat Microbiol. 141:5. PubMed
  101. Noah AC, et al. 2020. J Appl Physiol (1985). 473:128. PubMed
  102. Artham S, et al. 2020. Am J Physiol Lung Cell Mol Physiol. L750:318. PubMed
  103. Sun L, et al. 2020. J Immunol. 2177:204. PubMed
  104. Maulhardt HA, et al. 2020. Invest New Drugs. 1618:38. PubMed
  105. Koelwyn GJ, et al. 2020. Nat Med. 1452:26. PubMed
  106. Park HB, et al. 2020. Nat Microbiol. 1319:5. PubMed
  107. Magupalli VG, et al. 2020. Science. :369. PubMed
  108. Van der Meer JM, et al. 2020. Cancer Immunol Immunother. . PubMed
  109. Li J, et al. 2020. Cancer Discov. . PubMed
  110. Levi J, et al. 2020. J Nucl Med. . PubMed
  111. Carozza JA, et al. 2020. Nat Cancer. 184:1. PubMed
  112. Molgora M, et al. 2020. Cell. 182:886. PubMed
  113. Maller O, et al. 2020. Nat Mater. 20:548. PubMed
  114. Garcia LR, et al. 2021. Nat Commun. 12:3364. PubMed
  115. Wei JL, et al. 2021. J Immunother Cancer. 9: . PubMed
  116. Fantauzzi MF, et al. 2021. ERJ Open Res. 7: . PubMed
  117. Dhar P, et al. 2021. Commun Biol. 4:905. PubMed
  118. Abu El Maaty MA, et al. 2021. Sci Adv. 7: . PubMed
  119. Zhang Z, et al. 2020. Front Immunol. 11:583276. PubMed
  120. Bollenbach M, et al. 2021. Molecules. 26:. PubMed
  121. Jiang Y, et al. 2021. Nat Commun. 12:742. PubMed
  122. Chen J, et al. 2021. Sci Adv. 7:. PubMed
  123. Henrich IC, et al. 2021. Cancer Res. 81:2171. PubMed
  124. Prados A, et al. 2021. Nat Immunol. 22:510. PubMed
  125. Zhang R, et al. 2021. Cell Mol Immunol. 18:1222. PubMed
  126. Chetty A, et al. 2021. Cell Host Microbe. 29:579. PubMed
  127. Gangoso E, et al. 2021. Cell. 184:2454. PubMed
  128. Lee GR, et al. 2021. JCI Insight. 6:. PubMed
  129. Pizzurro GA, et al. 2021. Cancers (Basel). 13:. PubMed
  130. Menzel L, et al. 2021. Cell Rep. 37:109878. PubMed
  131. Pattabiraman G, et al. 2021. Am J Physiol Renal Physiol. . PubMed
  132. Hohsfield LA, et al. 2021. Elife. 10:. PubMed
  133. Daubeuf F, et al. 2021. Cells. 10:. PubMed
  134. Shannon JP, et al. 2021. STAR Protoc. 2:100790. PubMed
  135. Xiao Y, et al. 2021. Cell. 184:6037. PubMed
  136. He X, et al. 2021. J Immunother Cancer. 9:. PubMed
  137. Jong RM, et al. 2022. J Immunol. 208:407. PubMed
  138. An J, et al. 2022. iScience. 25:103570. PubMed
  139. Fujii Y, et al. 2022. JBMR Plus. 6:e10562. PubMed
  140. McDowell SAC, et al. 2021. Nat Cancer. 2:545. PubMed
  141. Zhang MS, et al. 2022. Nat Commun. 13:954. PubMed
  142. Liu W, et al. 2022. J Clin Invest. 132: . PubMed
  143. Chen Y, et al. 2022. Stem Cells Int. 2022:1309684. PubMed
  144. Daskou M, et al. 2022. PLoS Pathog. 18:e1010160. PubMed
  145. Nair S, et al. 2021. JCI Insight. 6:. PubMed
  146. Progatzky F, et al. 2021. Nature. 599:125. PubMed
  147. Benne N, et al. 2020. Adv Healthc Mater. 9:e2000043. PubMed
  148. Melhem NJ, et al. 2021. Circulation. 143:566. PubMed
  149. Ferrere G, et al. 2021. JCI Insight. 6:. PubMed
  150. Xiong H, et al. 2021. Theranostics. 11:1594. PubMed
  151. Tomlinson KL, et al. 2021. Nat Commun. 12:1399. PubMed
  152. Dustin CM, et al. 2021. J Immunol. 206:2989. PubMed
  153. Chen ELY, et al. 2021. Cell Rep. 35:109227. PubMed
  154. Puigdelloses M, et al. 2021. J Immunother Cancer. 9:. PubMed
  155. Strait AA, et al. 2021. Commun Biol. 4:1005. PubMed
  156. He X, et al. 2021. Adv Sci (Weinh). 8:e2103023. PubMed
  157. Reyes RM, et al. 2021. Oncoimmunology. 10:2006529. PubMed
  158. Murray MP, et al. 2022. Cell Rep. 38:110209. PubMed
  159. Ma C, et al. 2022. Proc Natl Acad Sci U S A. 119:. PubMed
  160. Zhai K, et al. 2021. Nat Cancer. 2:1136. PubMed
  161. Zhang HG, et al. 2022. Cell Res. :. PubMed
  162. Chen Y, et al. 2022. Nat Commun. 13:4468. PubMed
  163. Rossi G, et al. 2022. Sci Rep. 12:13380. PubMed
  164. van Elsas MJ, et al. 2022. Int J Mol Sci. 23:. PubMed
  165. Stevenson ER, et al. 2022. J Pharmacol Exp Ther. 382:356. PubMed
  166. Muñoz NM, et al. 2022. Sci Rep. 12:14449. PubMed
  167. Smith KJ, et al. 2022. PLoS Biol. 20:e3001554. PubMed
  168. Dye BR, et al. 2020. Biomaterials. 234:119757. PubMed
  169. Ayturk UM, et al. 2020. J Bone Miner Res. 35:1981. PubMed
  170. Ma J, et al. 2021. J Transl Med. 19:477. PubMed
  171. He X, et al. 2022. Cancer Immunol Res. 10:314. PubMed
  172. Chen X, et al. 2022. Front Immunol. 13:828319. PubMed
  173. Schloss MJ, et al. 2022. Nat Immunol. 23:605. PubMed
  174. Zhang C, et al. 2022. J Extracell Vesicles. 11:e12209. PubMed
  175. Duque-Correa MA, et al. 2022. Nat Commun. 13:1725. PubMed
  176. Schmid MC, et al. 2022. Nat Commun. 13:1768. PubMed
  177. Menzel L, et al. 2022. STAR Protoc. 3:101267. PubMed
  178. Abu El Maaty MA, et al. 2022. Sci Adv. 8:eabo2295. PubMed
  179. Ghosh S, et al. 2022. APL Bioeng. 6:036105. PubMed
  180. Zhao F, et al. 2022. Nat Commun. 13:6117. PubMed
  181. Yu Y, et al. 2022. Nat Commun. 13:6357. PubMed
  182. Abou-Hamad J, et al. 2022. iScience. 25:105524. PubMed
  183. Hackstein CP, et al. 2022. Nat Commun. 13:7472. PubMed
  184. Miki H, et al. 2020. J Immunol. 204:1892. PubMed
  185. Pohlmeier L, et al. 2021. Allergy. 76:2030. PubMed
  186. Taranto D, et al. 2021. Curr Protoc. 1:e147. PubMed
  187. Yin Q, et al. 2022. J Invest Dermatol. 142:2173. PubMed
  188. Paik D, et al. 2022. Nature. 603:907. PubMed
  189. van Dierendonck XAMH, et al. 2022. Proc Natl Acad Sci U S A. 119:e2114739119. PubMed
  190. Iberg CA, et al. 2022. Cell Rep. 39:110657. PubMed
  191. Mirchandani AS, et al. 2022. Nat Immunol. 23:927. PubMed
  192. Shallberg LA, et al. 2022. PLoS Pathog. 18:e1010296. PubMed
  193. Liu H, et al. 2022. Cell Rep Med. 3:100660. PubMed
  194. Brown JA, et al. 2022. Gut Microbes. 14:2105609. PubMed
  195. Balood M, et al. 2022. Nature. 611:405. PubMed
  196. Schepers M, et al. 2023. Brain Behav Immun. 109:1. PubMed
  197. He Y, et al. 2023. Nat Commun. 14:691. PubMed
  198. Kraynak CA, et al. 2022. Int J Pharm. 618:121634. PubMed
  199. Gomez-Salinero JM, et al. 2022. Cell Stem Cell. 29:593. PubMed
  200. Wong Fok Lung T, et al. 2022. Cell Metab. 34:761. PubMed
  201. Hailemichael Y, et al. 2022. Cancer Cell. 40:509. PubMed
  202. Bohrer AC, et al. 2022. Cell Rep. 40:111144. PubMed
  203. Zheng Y, et al. 2022. Proc Natl Acad Sci U S A. 119:e2121077119. PubMed
  204. Peng J, et al. 2023. Am J Reprod Immunol. 89:e13678. PubMed
  205. Gu J, et al. 2023. J Cell Biochem. 124:557. PubMed
  206. Rocca Y, et al. 2023. Methods Mol Biol. 2618:187. PubMed
  207. van Elsas MJ, et al. 2023. J Immunother Cancer. 11:. PubMed
  208. Senatus L, et al. 2023. Commun Biol. 6:280. PubMed
  209. Cai X, et al. 2023. Nat Commun. 14:2004. PubMed
  210. Lucas B, et al. 2023. Nat Commun. 14:2066. PubMed
  211. Terzic J, et al. 2023. EMBO Mol Med. 15:e17209. PubMed
  212. Wang D, et al. 2023. Nat Commun. 14:2943. PubMed
  213. Zeng S, et al. 2023. Front Oncol. 13:1171926. PubMed
  214. Dong X, et al. 2023. J Transl Med. 21:400. PubMed
RRID
AB_493714 (BioLegend Cat. No. 103127)
AB_493715 (BioLegend Cat. No. 103128)

Antigen Details

Structure
Protein tyrosine phosphatase (PTP) family, 180-240 kD
Distribution

All hematopoietic cells except mature erythrocytes and platelets

Function
Phosphatase, T and B cell activation
Ligand/Receptor
Galectin-1, CD2, CD3, CD4, TCR, CD22, Thy-1
Cell Type
B cells, Dendritic cells, Mesenchymal Stem Cells, Tregs
Biology Area
Cell Biology, Immunology, Inhibitory Molecules, Innate Immunity, Neuroscience, Neuroscience Cell Markers, Stem Cells
Molecular Family
CD Molecules
Antigen References

1. Barclay A, et al. 1997. The Leukocyte Antigen FactsBook Academic Press.
2. Trowbridge IS, et al. 1993. Annu. Rev. Immunol. 12:85.
3. Kishihara K, et al. 1993. Cell 74:143.
4. Pulido R, et al. 1988. J. Immunol. 140:3851.

Gene ID
19264 View all products for this Gene ID
UniProt
View information about CD45 on UniProt.org

Related FAQs

If an antibody clone has been previously successfully used in IBEX in one fluorescent format, will other antibody formats work as well?

It’s likely that other fluorophore conjugates to the same antibody clone will also be compatible with IBEX using the same sample fixation procedure. Ultimately a directly conjugated antibody’s utility in fluorescent imaging and IBEX may be specific to the sample and microscope being used in the experiment. Some antibody clone conjugates may perform better than others due to performance differences in non-specific binding, fluorophore brightness, and other biochemical properties unique to that conjugate.

Will antibodies my lab is already using for fluorescent or chromogenic IHC work in IBEX?

Fundamentally, IBEX as a technique that works much in the same way as single antibody panels or single marker IF/IHC. If you’re already successfully using an antibody clone on a sample of interest, it is likely that clone will have utility in IBEX. It is expected some optimization and testing of different antibody fluorophore conjugates will be required to find a suitable format; however, legacy microscopy techniques like chromogenic IHC on fixed or frozen tissue is an excellent place to start looking for useful antibodies.

Are other fluorophores compatible with IBEX?

Over 18 fluorescent formats have been screened for use in IBEX, however, it is likely that other fluorophores are able to be rapidly bleached in IBEX. If a fluorophore format is already suitable for your imaging platform it can be tested for compatibility in IBEX.

The same antibody works in one tissue type but not another. What is happening?

Differences in tissue properties may impact both the ability of an antibody to bind its target specifically and impact the ability of a specific fluorophore conjugate to overcome the background fluorescent signal in a given tissue. Secondary stains, as well as testing multiple fluorescent conjugates of the same clone, may help to troubleshoot challenging targets or tissues. Using a reference control tissue may also give confidence in the specificity of your staining.

How can I be sure the staining I’m seeing in my tissue is real?

In general, best practices for validating an antibody in traditional chromogenic or fluorescent IHC are applicable to IBEX. Please reference the Nature Methods review on antibody based multiplexed imaging for resources on validating antibodies for IBEX.

Go To Top Version: 4    Revision Date: 04.20.2022

8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

ProductsHere

Login / Register
Remember me
Forgot your password? Reset password?
Create an Account