Purified anti-Neurofilament Marker (pan axonal, cocktail) Antibody

Pricing & Availability
Clone
SMI 312 (See other available formats)
Regulatory Status
RUO
Other Names
SMI-312, SMI312
Isotype
Mouse IgG1/Mouse IgM
Ave. Rating
Submit a Review
Product Citations
publications
A_SMI312_PURE_NFMarker_CktlAb_IHCP_RatOrig_011816
IHC staining of purified anti-Neurofilament Marker (pan axonal, cocktail) antibody (clone SMI 312) on formalin-fixed paraffin-embedded rat brain tissue. Following antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was incubated with 1 µg/ml of the primary antibody overnight at 4°C. BioLegend’s Ultra Streptavidin (USA) HRP Detection Kit (Multi-Species, DAB, Cat. No. 929901) was used for detection followed by hematoxylin counterstaining, according to the protocol provided. The image was captured with a 40X objective.
  • A_SMI312_PURE_NFMarker_CktlAb_IHCP_RatOrig_011816
    IHC staining of purified anti-Neurofilament Marker (pan axonal, cocktail) antibody (clone SMI 312) on formalin-fixed paraffin-embedded rat brain tissue. Following antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was incubated with 1 µg/ml of the primary antibody overnight at 4°C. BioLegend’s Ultra Streptavidin (USA) HRP Detection Kit (Multi-Species, DAB, Cat. No. 929901) was used for detection followed by hematoxylin counterstaining, according to the protocol provided. The image was captured with a 40X objective.
  • B_SMI312_PURE_NFMarker_CktlAb_IHCP_Mu_011918
    IHC staining of purified anti-Neurofilament Marker (pan axonal, cocktail) antibody (clone SMI 312) on formalin-fixed paraffin-embedded mouse brain tissue. Following antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was incubated with 5 µg/ml of the primary antibody overnight at 4°C. BioLegend’s Ultra Streptavidin (USA) HRP Detection Kit (Multi-Species, DAB, Cat. No. 929901) was used for detection followed by hematoxylin counterstaining, according to the protocol provided. The image was captured with a 40X objective.
  • C_SMI312_PURE_NFMarker_CktlAb_IHCP_Rat_011918
    IHC staining of purified anti-Neurofilament Marker (pan axonal, cocktail) antibody (clone SMI 312) on formalin-fixed paraffin-embedded rat brain tissue. Following antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was incubated with 1 µg/ml of the primary antibody overnight at 4°C. BioLegend’s Ultra Streptavidin (USA) HRP Detection Kit (Multi-Species, DAB, Cat. No. 929901) was used for detection followed by hematoxylin counterstaining, according to the protocol provided. The image was captured with a 40X objective.
  • D_SMI312_PURE_NFMarker_CktlAb_WB_011918
    Western blot of purified anti-Neurofilament Marker (pan axonal, cocktail) antibody (clone SMI 312). Lane 1: Molecular weight marker; Lane 2: 20 µg of human brain lysate; Lane 3: 20 µg of Mouse brain lysate; Lane 4: 20 µg of rat brain lysate. The blots were incubated with 5 ug/mL of clone SMI 312 or mouse IgG1 overnight at 4°C, followed by incubation with HRP-labeled goat anti-mouse IgG (Cat. No. 405306). Direct-Blot™ HRP anti-Tubulin Beta 3 (TUBB3) antibody (clone AA10, Cat. No. 657409) was used as a loading control. Enhanced chemiluminescence was used as the detection system.
Cat # Size Price Quantity Check Availability Save
837904 100 µg 276 CHF
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

Neurofilaments (NF) are approximately 10 nanometer intermediate filaments found in neurons. They are a major component of the neuronal cytoskeleton and their function is primarily to provide structural support for the axon and to regulate axon diameter. There are three major NF subunits, and the names given to these subunits are based upon the apparent molecular mass of the mammalian subunits on SDS-PAGE. The light or lowest (NF-L) runs at 68-70 kD, the medium or middle (NF-M) runs at about 145-160 kD, and the heavy or highest (NF-H) runs at 200-220 kD. However, the actual molecular weight of these proteins is considerably lower due to the highly charged C-terminal regions of the molecules. The level of NF gene expression correlates with the axonal diameter, which controls how fast electrical signals travel down the axon. Mutant mice with NF abnormalities have phenotypes resembling amyotrophic lateral sclerosis. NF immunostaining is common in diagnostic neuropathology. It is useful for differentiating neurons (positive for NF) from glia (negative for NF).

Product Details
Technical Data Sheet (pdf)

Product Details

Reactivity
Human,Mouse,Rat
Antibody Type
Monoclonal
Host Species
Mouse
Immunogen
Homogenized hypothalami recovered from Fischer 344 rats.
Formulation
Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide.
Preparation
The antibody was purified by affinity chromatography.
Concentration
0.5 mg/mL
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C.
Application

IHC-P - Quality tested
WB - Verified
EM, ICC, IHC-F - Reported in the literature, not verified in house

Recommended Usage

Each lot of this antibody is quality control tested by formalin-fixed paraffin-embedded immunohistochemical staining. For immunohistochemistry, a concentration range of 1.0 - 5.0 µg/mL is suggested. For Western blotting, the suggested use of this reagent is 1.0 - 5.0 µg/mL. It is recommended that the reagent be titrated for optimal performance for each application.

Application Notes

Additional reported applications (for the relevant formats) include: immunocytochemistry1, 6, 12, 16, 19, immunofluorescent staining3, 8, 9, 18.

SMI 312 is a mixture of monoclonal antibodies that react against complex networks of axons. It is directed against extensively phosphorylated axonal epitopes on neurofilaments M and H. SMI 312 has been selected to provide a specific marker for axons in tissue sections and cultures. In contrast to individual anti-phosphoneurofilament antibodies that identify different subsets of neurofilament phosphoepitopes, which are suitable for defining functional and regional differences in normal and pathologic axons, SMI 312 is a convenient marker for axons in general. SMI 312 visualizes axons in an area-specific maturation pattern in human fetal brain. The antibody cocktail defines nuclear borderlines and is useful in establishing early connectivity with SMI 311, anti-neurofilament (not phosphorylated) identified dendrites. SMI 312 visualizes aberrantly sprouting axons in neuritic plaques derived from cortico-cortical fibers in Alzheimer's disease and identifies loss of synaptic circuitry proposed to be the basis of memory.

Application References

(PubMed link indicates BioLegend citation)
  1. Sternberger LA, et al. 1982. Proc. Natl. Acad. Sci. USA. 79:1326. (IHC, ICC)
  2. Choi Y, et al. 2008. Genes & Dev. 22:2485. (IHC) PubMed
  3. BussiFre T, et al. 2004. Am. J. Pathol. 165:987. (IHC-F)
  4. Chung RS, et al. 2003. J. Neurosci. 23:3336. (IHC)
  5. De Repentigny Y, et al. 2011. PLoS One. 6:e21093. (IHC)
  6. Wilkins A, et al. 2003. J. Neurosci. 23:4967. (ICC)
  7. Rudinskiy N, et al. 2012. Nat. Neurosci. 15:1422. (IHC)
  8. Wang JY, et al. 2014. Dev. Cell. 28:670. (EM)
  9. Canetta SE, et al. 2011. PLoS One. 6:e25108. (ICC) PubMed
  10. Nicaise C, et al. 2012. J. Neurotrauma. 29:2748. (IHC)
  11. Ma M, et al. 2013. Neurobiol. Dis. 56:34. (IHC)
  12. Zurashvili T, et al. 2013. Mol. Cell Biol. 33:1027. (ICC)
  13. Powers BE, et al. 2013. Proc. Natl. Acad. Sci. USA. 110:4075. (IHC)
  14. Riddle A, et al. 2012. Stroke. 43:178. (IHC)
  15. Sahni V, et al. 2010. Neurosci. 30:1839. (IHC)
  16. Liu HY, et al. 2013. J. Neurosci. 33:11479. (ICC)
  17. Nicaise C, et al. 2013. J. Neurotrauma. 30:1092. (IHC)
  18. Klusch A, et al. 2013. J. Invest. Dermatol. 133:1387. (ICC) PubMed
  19. Huang TN, et al. 2014. Nat. Neurosci. 17:240. (ICC)
Product Citations
  1. Geerts C, et al. 2017. PLoS One. 10.1371/journal.pone.0180912. PubMed
  2. Plemel J,et al. 2017. Glia. . 10.1002/glia.23245. PubMed
  3. Zappulo A, et al. 2017. Nat Commun. 10.1038/s41467-017-00690-6. PubMed
  4. Dominguez N et al. 2017. Journal of neurochemistry. 144(3):241-254 . PubMed
  5. Hines TJ et al. 2017. eNeuro. 5(1) pii: ENEURO. PubMed
  6. Wischhof L, et al. 2018. Mol Metab. 14:e1007363. PubMed
  7. Matsumura R, et al. 2018. Sci Rep. 9:797. PubMed
  8. Partida GJ et al. 2018. The Journal of Neuroscience. 38(37):8087-8105 . PubMed
  9. Cheng WH, et al. 2019. Alzheimers Res Ther. 11:6. PubMed
  10. Mendsaikhan A, et al. 2019. Front Mol Neurosci. 11:470. PubMed
  11. Domise M, et al. 2019. Cell Death Dis. 10:221. PubMed
  12. Zunke F et al. 2017. Neuron. 97(1):92-107 . PubMed
  13. Hamilton AM, et al. 2019. Sci Rep. 9:8488. PubMed
  14. Jensen SK, et al. 2018. Cell Rep. 24:3167. PubMed
  15. Brouwer M et al. 2019. EMBO J. 38(17):e101289 . PubMed
  16. Chierto E, et al. 2018. Mol Neurobiol. 56:4231. PubMed
  17. Tan C, et al. 2019. Neuron. 101:920. PubMed
  18. Urban MW et al. 2019. J Neurotrauma. 37(3):572-579 . PubMed
  19. Iannielli A, et al. 2019. Cell Rep. 29:4646. PubMed
  20. Giandomenico SL, et al. 2019. Nat Neurosci. 22:669. PubMed
  21. Qiang L, et al. 2019. Hum Mol Genet. 28:1136. PubMed
  22. Zhu X, et al. 2020. J Neuroinflammation. 17:78. PubMed
  23. Sundaramoorthy V, et al. 2020. PLoS Pathog. 16:e1008343. PubMed
  24. Wu F, et al. 2019. J Neurosci. 39:7369. PubMed
  25. Aiken J, et al. 2019. Hum Mol Genet. 28:1227. PubMed
  26. Fifield KE, et al. 2020. European Journal of Neuroscience. 52(4):3196-3214.. PubMed
  27. Qian X, et al. 2020. Cell Stem Cell. 26(5):766-781. PubMed
  28. Rodriguez BL, et al. 2020. PLoS One. 15:e0239152. PubMed
  29. Shao W, et al. 2020. Nature. 580:106. PubMed
  30. Shen Y, et al. 2020. Theranostics. 10:11794. PubMed
  31. Choi Y, et al. 2008. Genes Dev. 22:2485-2495. PubMed
  32. Shah B, et al. 2016. Cereb Cortex. 10.1093/cercor/bhv341. PubMed
  33. Zigler Jr. J, et al. 2016. PLoS One. 11: 0160447. PubMed
  34. Schulz A, et al. 2016. PLoS One. 11: 0159718. PubMed
  35. Li H, et al. 2016. Sci Rep. 6:29878. PubMed
  36. Li T, et al. 2016. Nat Commun. 7:12082. PubMed
  37. Sellgren C, et al. 2016. Mol Psychiatry. 22:170-177. PubMed
  38. Claus L, et al. 2017. Cereb Cortex. 10.1093/cercor/bhw368. PubMed
  39. Ehrlich M, et al. 2017. Proc Natl Acad Sci U S A. 114(11):E2243-E2252. PubMed
  40. Xiaojie Wang, Colin Studholme 2017. J Neurosci. 37(8):1971-1983. PubMed
  41. So Hyun Kim, Sun-Kyoung Im 2017. Nat Commun. 8:14346. PubMed
  42. Dang T, et al. 2017. Mol Psychiatry. 10.1038/mp.2016.253. PubMed
  43. Weber R, et al. 2017. NMR Biomed. 10.1002/nbm.3717. PubMed
  44. Lee CH, et al. 2020. Nat Commun. 4.466666667. PubMed
  45. Kao CS, et al. 2020. Nat Commun. 4.141666667. PubMed
  46. Huang YA, et al. 2020. J Cell Sci. 133:00:00. PubMed
  47. Yeh SI, et al. 2021. Invest Ophthalmol Vis Sci. 62:23:00. PubMed
  48. Song JM, et al. 2021. The Journal of Neuroscience. 41(11):2344-2359. PubMed
  49. Pan X, et al. 2021. eLife. 10:00. PubMed
  50. Kahriman A, et al. 2021. Acta Neuropathologica Communications. 9(1):118. PubMed
  51. Alada-Morais S, et al. 2021. Cerebral Cortex. :. PubMed
  52. Wegscheid ML, et al. 2021. Cell Reports. 36(1):109315. PubMed
  53. Olmsted ZT, et al. 2021. iScience. 24(8):102827. PubMed
  54. Zhu Q, et al. 2021. Cell Reports. 36(9):109639. PubMed
  55. Michaels NJ, et al. 2020. J Neurosci. 8587:40. PubMed
  56. Novakova SS, et al. 2020. Tissue Eng Part A. 26:837. PubMed
  57. Kugler C, et al. 2020. Cell Rep Med. 1:100159. PubMed
  58. Mehta AR, et al. 2021. Acta Neuropathol. 141:257. PubMed
  59. Pons V, et al. 2021. Alzheimers Res Ther. 13:8. PubMed
  60. Zhang R, et al. 2021. Neurosci Bull. 37:1091. PubMed
  61. Kanaan NM, et al. 2021. Front Mol Neurosci. 14:607303. PubMed
  62. Wegmann S, et al. 2021. Sci Adv. 7:. PubMed
  63. Connor M, et al. 2021. PLoS One. 16:e0253766. PubMed
  64. Xie X, et al. 2021. Nat Commun. 12:4113. PubMed
  65. Doron-Mandel E, et al. 2021. EMBO J. 40:e107158. PubMed
  66. OIsen T, et al. 2021. Front Cell Neurosci. 15:721371. PubMed
  67. Soto-Faguás CM, et al. 2021. Acta Neuropathol Commun. 9:162. PubMed
  68. Ban Y, et al. 2021. Sci Adv. 7:eabh2974. PubMed
  69. Hoffmann PC, et al. 2021. Elife. 10:. PubMed
  70. Feng T, et al. 2021. J Cereb Blood Flow Metab. 41:1437. PubMed
  71. Cousin MA, et al. 2021. Nat Genet. 53:1006. PubMed
  72. Huuskonen MT, et al. 2021. Front Immunol. 12:785519. PubMed
  73. Chludzinski E, et al. 2022. Front Vet Sci. 8:795126. PubMed
  74. Yamada S, et al. 2021. iScience. 24:103484. PubMed
  75. Davies AK, et al. 2022. Nat Commun. 13:1058. PubMed
  76. Li P, et al. 2022. Nat Commun. 13:3130. PubMed
  77. Creighton BA, et al. 2021. Elife. 10:. PubMed
  78. Haytural H, et al. 2021. Brain Commun. 3:fcab079. PubMed
  79. Eltahir MK, et al. 2022. PLoS One. 17:e0269683. PubMed
  80. Olguin SL, et al. 2022. Commun Biol. 5:672. PubMed
  81. Lickfett S, et al. 2022. STAR Protoc. 3:101567. PubMed
  82. Uyeda A, et al. 2021. Glia. 69:2591. PubMed
  83. Ben Haim L, et al. 2021. Glia. 69:2812. PubMed
  84. Chueh KS, et al. 2022. Int J Mol Sci. 23:. PubMed
  85. Yamada S, et al. 2022. PLoS Genet. 18:e1010438. PubMed
  86. Scaricamazza S, et al. 2022. Br J Pharmacol. 179:1732. PubMed
  87. Silverå Ejneby M, et al. 2022. Nat Biomed Eng. 6:741. PubMed
  88. Castoldi V, et al. 2022. J Neurosci Res. 100:855. PubMed
  89. Southam K, et al. 2022. J Physiol. 600:1611. PubMed
  90. Ackermans NL, et al. 2022. Acta Neuropathol. 144:5. PubMed
  91. Schwarzenberg FL, et al. 2022. Front Immunol. 13:947961. PubMed
  92. Su X, et al. 2023. Int J Mol Med. 51: . PubMed
  93. Junakovic A, et al. 2023. Brain Struct Funct. 228:613. PubMed
  94. Unda BK, et al. 2023. Mol Psychiatry. :. PubMed
  95. Mendonsa S, et al. 2023. Nat Neurosci. 26:394. PubMed
  96. Kapell H, et al. 2023. J Clin Invest. :. PubMed
  97. Prieto Huarcaya S, et al. 2022. Autophagy. 18:1127. PubMed
  98. Abedin MJ, et al. 2023. Front Bioeng Biotechnol. 11:1150772. PubMed
  99. Woelfle S, et al. 2023. BMC Biol. 21:113. PubMed
  100. So HK, et al. 2023. Research (Wash D C). 6:0158. PubMed
RRID
AB_2566782 (BioLegend Cat. No. 837904)

Antigen Details

Structure
Three major neurofilament subunits. Its names given to these subunits are based upon the apparent molecular mass of the mammalian subunits on SDS-PAGE: The medium or middle (NF-M) runs at about 145-160 kD and the heavy or highest (NF-H) runs at 200-220 kD.
Distribution

Tissue distribution: CNS, peripheral nerves, and glandular cells of the prostate.
Cellular distribution: Cytoskeleton, nucleus, cytosol, and mitochondrion.

Function
Neurofilaments are the major components of the neuronal cytoskeleton. They provide axonal support and regulate axon diameter.
Cell Type
Mature Neurons
Biology Area
Cell Biology, Cell Motility/Cytoskeleton/Structure, Neuroscience, Neuroscience Cell Markers
Molecular Family
Intermediate Filaments
Antigen References

1. Petzold A. 2005. J. Neurol. Sci. 233:183. PubMed

Gene ID
4747 View all products for this Gene ID 4744 View all products for this Gene ID 4741 View all products for this Gene ID
UniProt
View information about Neurofilament Marker on UniProt.org
Go To Top Version: 6    Revision Date: 08.29.2022

8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

ProductsHere

Login / Register
Remember me
Forgot your password? Reset password?
Create an Account